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Abstract

In this paper, we prove existence, symmetry and uniqueness of standing waves
for a coupled Gross-Pitaevskii equations modeling component Bose-Einstein conden-
sates(BEC) with an internal atomic Josephson junction. We will then address the
orbital stability of these standing waves and characterize their orbit.

1 Introduction

The dynamics of a model of a two-component (BEC) irradiated by an external electromag-
netic field are given by the following two coupled nonlinear Schrödinger equations :

i∂tψj = −1

2
∆ψj +

γ2

2
|x|2ψj + βjj|ψj|2ψj + βji|ψi|2ψj + λψi + δψj

ψj(0, x) = ψ0
j

 (1.1)

i 6= j = (1, 2), (t, x) ∈ R× RN , N = 1, 2, 3.

V (x) =
γ2

2
|x|2 is the trapping potential, γ > 0.

β12 = β21 is the inter-specific scattering length, while β11 and β22 are the intra ones. λ is the
rabi frequency related to the external electric field. It is the effective frequency to realize
the internal atomic Josephson junction by a Raman transition, δ is the detuning constant
for the Raman transition. (1.1) arises in modelling BEC composed of atoms in two hyper-
fine states in the same harmonic map [1]. Recently, BEC with multiple species have been
realized in experiments, ([2] and references therein) and many interesting phenomena, which
do not appear in the single component BEC, have been observed in the multi-component
BEC. The simplest multi-component BEC can be viewed as a binary mixture, which can
be used as a model to produce atomic lazer. To our knowledge, the first experiment in this
framework has been done quite recently, this has opened the way to many other groups of
research who carried out the study of such problems for two-component BEC theoretically
and experimentally.
In this paper, we consider a binary BEC model in which there is an irradiation with an elec-
tromagnetic field, this causes a Josephson-type oscillation between the two species. These
condensates are extremely important in physics and nonlinear optics since it is possible to
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measure the relative phase of one component with respect to the other one [Lemma 2.1, 2].
Controlling the relative phase, it is also possible to produce vortices, [7] account is given in
[1].

A standing wave for (1.1) is a function (ψ1, ψ2) = (e−iµ1tΦ1, e
−iµ2tΦ2) solving this NLS.

Thus it satisfies the following 2× 2(C) elliptic system :
µ1Φ1 =

[
− 1

2
∆ +

γ2

2
|x|2 + δ + β11|Φ1|2 + β12|Φ2|2

]
Φ1 + λΦ2

µ2Φ2 =
[
− 1

2
∆ +

γ2

2
|x|2 + δ + β22|Φ2|2 + β12|Φ1|2

]
Φ2 + λΦ1

(1.2)

Ground state solutions of (1.2) are the minimizes of the following constrained variational
problem : For two prescribed real numbers c1 and c2

Îc1,c2 = inf
(Ψ1,Ψ2)∈Ŝc1,c2

Ê(Ψ1,Ψ2) (1.3)

Ŝc1,c2 =

{
(Ψ1,Ψ2) ∈ ΣC(RN)× ΣC(RN) :

∫
|Ψ1|2 = c2

1 and

∫
|Ψ2|2 = c2

2

}
.

∑
(RN) =

{
u ∈ H1(RN) :

∫
RN

|x|2u2(x)dx <∞
}

|u|2∑(RN ) = |u|22 + |∇u|22 + ||x|u|22∑
C
(RN) =

{
z = (u, v) ' u+ iv : (u, v) ∈

∑
(RN)×

∑
(RN)

}
‖z‖2∑

C(RN ) = ‖z‖2
2 + ‖∇z‖2

2 + ‖|x|z‖2
2.

Ê(Ψ) = Ê0(Ψ1,Ψ2) + 2λ

∫
Re(Ψ1Ψ2)dx,

with f̄ denoting the conjugate part of f and Re(f) its real one.

Ê0(ψ) = Ê0(Ψ1,Ψ2) =

∫
RN

1

2

[
|∇Ψ1|22 + |∇Ψ2|22 + γ2|x|2(|Ψ1|2 + |Ψ2|2)

]
+δ|Ψ1|2 +

1

2
β11|ψ1|4 +

1

2
β22|Ψ2|4 + β12|Ψ1|2|Ψ2|2

}
dx

(1.5)

As proved in iii) and iv) of Lemma 2.1 of [2], solving the constrained minimization problem
(1.3) is equivalent to study the auxiliary minimization problem :

˜̂
Ic1,c2 = inf

(Ψ1,Ψ2)∈Ŝc1,c2

˜̂
E(Ψ1,Ψ2) (1.6)

where ˜̂
E(Ψ) =

˜̂
E(Ψ1,Ψ2) = Ê0(Ψ)− 2|λ|

∫
RN

|Ψ1||Ψ2|dx (1.7)

The main objective of the present work is to show the orbital stability of standing waves of
(1.1). To reach this goal, we will first solve (1.6) for real-valued functions :

Ĩc1,c2 = inf
(u1,u2)∈Sc1,c2

Ẽ(u1, u2) = inf
(u1,u2)∈Sc1,c2

Ẽ(u). (1.8)

Ẽ(u) = Ẽ(u1, u2) = Ẽ0(u1, u2)− 2|λ|
∫
|u1||u2|dx. (1.9)
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Sc1,c2 =

{
(u1, u2) ∈

∑
(RN)×

∑
(RN) :

∫
RN

u2
1(x) = c2

1 and

∫
RN

u2
2(x) = c2

2

}
.

We will first prove existence, symmetry uniqueness of minimizers of (1.8). Then we will use
these qualitative properties to solve the constrained variational problem (1.6), which is in
itself a key step to show the orbital stability of standing waves and to characterize their
orbit.
It is extremely important to obtain stable solutions without using highly oscillating magnetic
fields (which are very costful). These states are the most relevant in physics since they are
the only ones that can be observed in the experiments.
As mentioned in [2], the 2-component (BEC) is also used as a model for producing coherent
atomic lasers. Stable standing waves indicate that the propagation is perfect in these beams.

Nevertheless, this relevant issue has not been addressed in [2]. Note also that a crucial
intermediate step to study the stability of ground state solutions is to establish the existence
of the minimizers of the associated constrained variational problem (1.6). In [2], the authors

only considered the very restrictive assumption on the constraint Ŝc1,c2 , i.e.

∫
u2

1 +

∫
u2

2 = 1.

(Remark 1) b). This implies that one has to impose that µ1 = µ2 (1.6) for the standing
waves and that the solutions must have small masses. This is of course inappropriate in view
of the applications.

In this paper, we will concentrate our study on the critical case N = 2, which is, from
the mathematical point of view, the most challenging case.
Our paper is organized as follows. In section 2, we will give some important definitions and
preliminary results. Then we will derive some qualitative properties of the energy functional
and the minimization problem, this will be the key ingredient to study the orbital stability
of standing waves in the last section.
We will focus our study on the case N = 2 but we will give clear and complete indications
about N = 1 and N = 3.

2 Notation, Definitions and Preliminary Results

H1(RN) is the usual Hilbert space∑
(RN) = {u ∈ H1(RN) :

∫
RN

|x|2|u|2dx <∞}

|u|2∑(RN ) = |u|22 + |∇u|22 + |xu|22
|u|p is the standard norm of the Lp(RN) space

H1(RN ,C) = {z = (u, v) ∈ H1(RN)×H1(RN)}.

We shall identify z = (u, v) with u+ iv ∈ H1(RN ,C).
For z ∈ H1(RN ,C), ‖z‖2

H1(RN ,C) = ‖z‖2
2 + ‖∇z‖2

2

‖z‖2
2 = |u|22 + |v|22 and ‖∇z‖2

2 = |∇u|22 + |∇v|22.

Here and elsewhere | |q denotes the usual norm in Lq(RN) and ‖ ‖q is the standard norm in
Lq(RN ,C). ∑

C

(RN) =

{
z ∈ H1(RN ,C)

∫
|x|2|z|2dx <∞

}
.
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∑
(RN) ×

∑
(RN) and

∑
C(RN) ×

∑
C(RN) are equipped with the standard cartesian

norms.
For fixed real numbers c1 and c2, we define

Zc1,c2 = {(z1, z2) ∈ Ŝc1,c2 :
˜̂
E(z1, z2) =

˜̂
Ic1,c2} (2.1)

Wc1,c2 = {(u1, u2) ∈ Sc1,c2 , u1 and u2 > 0 and Ẽ(u1, u2) = Ĩc1,c2}.

We say that Zc1,c2 is stable if :
Zc1,c2 6= ∅

and ∀ w = (w1, w2) ∈ Zc1,c2 , ∀ ε > 0, ∃ δ > 0 such that for any ψ0 = (Ψ1
0,Ψ

2
0) ∈∑

C(RN)×
∑

C(RN) satisfying :{
‖Ψ0 − w‖∑C(RN )

< δ

inf
z∈Zc1,c2

‖Ψ(t, .)− z‖ΣC(Rn) < ε (2.2)

for all t ∈ R, where Ψ(t, .) is the unique solution of (1.1) corresponding to the initial con-
dition Ψ0. (Note that in [1], the authors have solved the Cauchy problem (1.1) under the
assumptions of Lemma 2.3 below).
Lemma 2.1. [Lemma 4.4,8]∑

(RN) is compactly embedded in Lq(RN) for any q such that 2 ≤ q < 2N
N−2

.
Lemma 2.2 Let N = 2,

(A1)


βij < 0, 1 ≤ i, j ≤ 2 and
β11c

2
1 + β12c1c2 > −cb

β22c
2
2 + β12c1c2 > −cb

cb is defined as the best constant in the Gagliardo-Nirenberg inequality∫
R2

u4 ≤ 1

cb
|∇u|22|u|22 (2.3)

Then :

1. The minimization problem (1.8) is well-posed and any minimizing sequence of (1.8) is
bounded in

∑
(R2)×

∑
(R2).

2. Any minimizing sequence of (1.8) is relatively compact in
∑

(R2)×
∑

(R2), i.e, ∀ un =
(un,1, un,2) ⊂ Sc1,c2 such that E(un,1, un,2) → Ic1,c2 , then there exists u = (u1, u2) ∈∑

(R2)×
∑

(R2) such that un → u in
∑

(R2)×
∑

(R2) (up to a subsequence).

3. The functionals Ẽ and
˜̂
E are C1 in

∑
(R2)×

∑
(R2) (resp.

∑
C(R2)×

∑
C(R2)

4. (c1, c2)→ Ĩc1,c2 is continuous .

Proof

1. Let (u1, u2) ∈ Sc1,c2 .
First using Gagliardo-Nirenberg inequality, we know that∫

R2

|u1|4 ≤
1

cb
|∇u1|22|u1|22 =

1

cb
|∇u1|22c2

1 (2.4)
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and ∫
R2

|u2|4 ≤
1

cb
|∇u2|22|u2|22 =

1

cb
|∇u2|22c2

2.

On the other hand, by Hardy inequality, we have that :∫
R2

|u1|2|u2|2 ≤
(∫

R2

|u1|4
)1/2(∫

R2

|u2|4
)1/2

≤ c1c2

cb
|∇u1|2|∇u2|2 (2.5)

It follows by Young inequality that :∫
R2

|u1|2|u2|2 ≤
1

2cb
c1c2[|∇u1|22 + |∇u2|22] (2.6)

On the other hand, we can easily prove that

−2|λ|
∫
R2

|u1||u2| ≥ −2|λ|c1c2 (2.7)

Combining (2.4) to (2.7), we get :

Ẽ(u) = Ẽ(u1, u2) ≥ |∇u1|22{
1

2
+

1

2
β11

c2
1

cb
+

1

2
β12

c1c2

cb
}

+|∇u2|22{1/2 + 1
2
β22

c22
cb

+ 1
2
β12

c1c2
cb
} − |δ||u1|22

−2|λ|c1c2 +
γ2

2

∫
R2

|x|2(|u1|2 + |u2|2).

(2.8)

(A1) enables us to conclude that the energy functional Ẽ is bounded from below in
∑

(RN)×∑
(RN).

Remark 1

a) If there exists βij ≥ 0, then 1) still holds true by replacing βjj ≥ 0 by 0 in the
assumption (A1).

b) In [2], the boundedness from below of the energy functional Ẽ has been proved differ-
ently (page 56, line 9).
More precisely : Combining Cauchy and Gagliardo Nirenberg inequalities, the authors
have proved that∫

R2

β11|u1|4 +β22|u2|4 + 2β12|u1|2|u2|2dx ≥

−cb
∫
R2

(
√
|u1|2 + |u2|2)4dx ≥ −

∫
R2

(
√
|u1|2 + |u2|2)2dx

∫
R2

(∇
√
|u1|2 + |u2|2)2

≥ −
∫
R2

|∇u1|2 + |∇u2|2. (2.8′)

provided that
β11 > −cb
β22 > −cb
β12 ≥ −cb −

√
β11 + cb

√
β22 + cb

and
c2

1 +c2
2 < 1.

 . (A′1)

It seems that if one uses their approach, it is necessary to impose the very restrictive
condition : c2

1 + c2
2 < 1.

Nevertheless the two approaches are equivalent if one considers the same one-constrained

minimization problem (1.8) with ”their” constraint

∫
u2

1 + u2
2 = 1.
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c) The case N = 1 is immediate since the Gagliardo Nirenberg inequality is not critical
there.

However for N = 3, our approach only applies when all the constants βij are positive.
Additionally if c2

1 + c2
2 < 1 then using the same approach developed in [2] ((2.8)’), we

can easily prove that 1) and 2) still hold true if we have the following assumption :

β11 > 0
β22 > 0
β11β22 − β2

12 > 0.

 (A1)N=3

β11 > 0, β12 > 0 and β22 > 0. (A′1)N=3

d) Let us finally emphasize that all the results of this section hold true provided that the
constrained minimization problem is well-posed.

Proof of 2)
By 1), we can conclude that any minimizing sequence un = (un,1, un,2) of (1.8) is bounded

in
∑

(R2)×
∑

(R2). Therefore up to a subsequence (that we will also denote by (un)), there
exists (u1, u2) ∈

∑
(R2)×

∑
(R2) such that un,1 ⇀ u1 and un,2 ⇀ u2 in

∑
(R2).

By Lemma 2.1, un,1 → u1 and un,2 → u2 in Lp(R2), ∀ 2 ≤ p <∞. (2.9)
Now note that by the lower semi-continuity of the norm | |∑(RN ), we certainly have :

1
2
|∇u1|22 +1

2
|∇u2|22 + γ2

2

∫
R2

|x|2(u1|2 + |u2|2)dx

≤ lim inf
(

1
2
|∇un,1|22 + 1

2
|∇un,2|22 + γ2

2

∫
R2

|x|2(|un,1|2 + |un,2|2)dx
) (2.10)

On the other hand, by (2.9), we have that :∫
R2

|un,1|4 →
∫
|u1|4∫

R2

|un,2|4 →
∫
|u2|4 (2.11)

Thus using the dominated convergence theorem, we can deduce that.∫
R2

|un,1|2|un,2|2 →
∫
R2

|u1|2|u2|2 (2.12)

Indeed since un → u in L4(R2) × L4(R2), there exist a subsequence (unj,1) ⊂ L4(R2) and a
function h ∈ L4(R2) such that unj,1 → u1 almost every where with |unj,1| ≤ h.
Similarly, we can find (unj,2 and k ⊂ L4(R2) such that un,2 → u2 a.e with |unj,2| ≤ k)∫

R2

|unj,1|2|unj,2|2 ≤
∫
R2

h2k2dx ≤ (

∫
h4)1/2(

∫
k4)1/2 <∞.

Therefore

lim
n→∞

∫
R2

|unj,1|2|unj,2|2 ≤
∫
R2

h2k2dx ≤ (

∫
h4)1/2(

∫
k4)1/2 <∞

In the same manner, we can prove that lim
n→∞

∫
|un,1||un,2| =

∫
|u1||u2|. (2.13)

Combining (2.10) to (2.13), we obtain :

Ẽ(u) = Ẽ(u1, u2) ≤ lim inf Ẽ(un,1, un,2) = Ĩc1,c2 . (2.14)

6



But ∫
u2

1 = lim
n→∞

∫
R2

u2
n,1 = c2

1 and

∫
u2

2 = lim
n→∞

∫
R2

u2
n,2 = c2

2.

Thus u = (u1, u2) ∈ Sc1,c2 with Ẽ(u) = Ẽ(u1, u2) = Ĩc1,c2 .
Remark 2 :
• In part 2) of the Lemma, we have also proved that any minimizing sequence of (1.8)

is relatively compact in
∑

(RN)×
∑

(RN)
• The proofs of 3) and 4) goes exactly in the same way as in [Proposition 3.2, 4].

Lemma 2.3 Under (A1), all the minimizers of (1.3) are non-negative radial and radially
decreasing.
Proof. First note that Ẽ(|u1|, |u2|) ≤ Ẽ(u1, u2) for any (u1, u2) ∈

∑
(RN) ×

∑
(RN).

Therefore, we can suppose without class of generality that u1 and u2 are non-negative.
On the other hand, using rearrangement inequalities, [5], we know that for any f, g non-
negative ∈

∑
(RN), we have : ∫

f 2 =

∫
(f ∗)2∫

f 4 =

∫
(f ∗)4∫

fg ≤
∫
f ∗g∗

β12

∫
(f ∗)2(g∗)2 ≤ β12

∫
f 2g2∫

|x|2(f ∗)2 <

∫
|x|2f 2,

and
|∇f ∗|2 ≤ |∇f |2.

Lemma 2.4. If

(A2)



β =

(
β11 β12

β12 β22

)
is positive semi-definite

and at least :

β11 − β22 6= 0 or
β11 − β12 6= 0 or
δ 6= 0 or
λ 6= 0

Then (1.8) has a unique minimizer.
Proof [Lemma 2.2, 2]

3 Orbital stability of standing waves of (1.1) (when

λ = 0)

In this section we will restrict ours study to the case λ = 0 since we only have conservation
of each mass in this case as noticed in (4.1) and (4.2) of [7]. We assume that (A1) and (A2)
hold true.
Theorem 3.1

1. For any c1, c2; Ĩc1,c2 =
˜̂
Ic1,c2 , Zc1,c2 6= ∅ and Zc1,c2 is stable
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2. For any z = (z1, z2) ∈ Zc1,c2 , |z| = (|z1|, |z2|) ∈ Wc1,c2 and

Zc1,c2 =
{

(eiθ1w1, e
iθ2w2), (θ1, θ2) ∈ R2

}
,

where (w1, w2) is the unique solution of (1.8).

Proof

1. As suggested in [3], to show the orbital stability of the standing waves of (1.1), it
suffices to prove that : Zc1,c2 6= ∅ and any minimizing sequence{

zn = (zn,1, zn,2) ∈ ΣC(R2)× ΣC(R2) such that ‖zn,1‖2 → c1 and

‖zn,2‖2 → c2 and
˜̂
E(zn)→ ˜̂

Ic1,c2
(3.1)

is relatively compact in
∑

C(R2)×
∑

C(R2).
Let zn = (zn,1, zn,2) (with zn,1 = (un,1, vn,1), zn,2 = (un,2, vn,2)) ⊂

∑
C(R2)×

∑
C(R2) be

a sequence such that ‖zn,1‖2 → c1 ‖zn,2‖2 → c2 and
˜̂
E(zn,1, zn,2)→ ˜̂

Ic1,c2 .

Our first goal is to prove that {zn} has a subsequence which is convergent in
∑

C(R2) ×∑
C(R2).

By Lemma 2.2, it can be immediately deduced that {zn} is bounded in
∑

C(R2)×
∑

C(R2),
therefore passing to a subsequence, one can suppose that :

un,i ⇀ ui and vn,i ⇀ vi in
∑

(R2), 1 ≤ i ≤ 2. (3.2)

Now set ρn,i = |zn,i| = (u2
n,i + v2

n,i)
1/2.

It follows that {ρn,i} ⊂
∑

(R2) and that for all n ∈ N and 1 ≤ i, j ≤ 2 :

∂jρn,i =


un,i(x)∂jun,i(x) + vn,i(x)∂jvn,i(x)

(u2
n,i + v2

n,i)
1/2

if u2
n,i + v2

n,i > 0

0 elsewhere

Thus

˜̂
E(zn)− Ẽ(ρn) =

1

2
{‖∇zn‖2

2 − ‖∇|zn|‖2
2}

=
1

2
{‖∇zn,1‖2

2 + ‖∇zn,2‖2
2 − |∇ρn,1|22 − |∇ρn,2|22}

=
1

2
{|∇vn,1|22 + |∇vn,1|22 + |∇un,2|22 + |∇un,2|22 − |∇ρn,1|22 − |∇ρn,2|22}

=
1

2

2∑
i=1

∫
{u2n,i+v

2
n,i>0}

2∑
j=1

(
un,i∂jvn,i − vn,i∂vn,i)2

u2
n,i + v2

n,i

≥ 0

(3.3)

Hence
˜̂
Ic1,c2 = lim

n→∞
˜̂
E(zn) ≥ lim sup Ẽ(ρn).

Taking into account that, we obtain :

‖zn,i‖2
2 = |ρn,i|22 = c2

n,i → c2
i ∀ 1 ≤ i ≤ 2, (3.4)

Thus using Lemma 2.2 4), we obtain that :

lim inf Ẽ(ρn) ≥ lim inf Ĩcn,1,cn,2 ≥ Ĩc1,c2 ≥
˜̂
Ic1,c2 ,
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and hence

lim
n→∞

Ẽ(ρn) = lim
n→∞

˜̂
E(zn) =

˜̂
Ic1,c2 = Ĩc1,c2 . (3.5)

On the other hand (3.3) implies that for any 1 ≤ i ≤ 2, we have :

lim
n→∞

∫
R2

|∇un,i|2 + |∇vn,i|2 − |∇(u2
n,i + v2

n,i)
1/2|2dx = 0. (3.6)

(3.2) together with (3.6) imply that ∀ 1 ≤ i ≤ 2.

lim
n→∞

∫
R2

|∇un,i|2 + |∇vn,i|2dx = lim
n→∞

∫
R2

|∇(u2
n,i + v2

n,i)
1/2|2 (3.7)

which is equivalent to say that

lim
n→∞

‖∇zn‖2
2 = lim

n→∞

∣∣∣∇|zn|∣∣∣2
2
. (3.8)

Now using (3.4), (3.5) and Remark 1, ρn = (ρn,1, ρn,2) is relatively compact in
∑

(R2) ×∑
(R2). Thus, there exist ρ1, ρ2 ∈

∑
(R2) such that :

(u2
n,i + v2

n,i)
1/2 converges to ρj in

∑
(R2) : ∀ 1 ≤ i ≤ 2

|ρj|2 = cj and

Ẽ(ρ1, ρ2) = Ĩc1,c2

(3.9)

Let us first prove that ρi = |zi| = (u2
i + v2

i )
1/2 ; (ui and vi are given in (3.2)).

By (3.2), we know that un,i → ui and vn,i → vi in L2(B(0, R)), and we can easily see that :

[(u2
n,i + v2

n,i)
1/2 − (u2

i + v2
i ]

2 ≤ |un,i − ui|2 + |vi,n − vi|2,

therefore
(u2

n,i + v2
n,i)

1/2 → (u2
i + v2

i )
1/2 in L2(B(0, r)) ∀ R > 0.

But (u2
n,i + v2

n,i)
1/2 → ρi in L2(B(0, R), this certainly implies that |zi| = ρi ∀ 1 ≤ i ≤ 2.

On the other hand ‖zn,i‖2 = ‖zn,i‖2 → ci = ‖zi‖ = ||zi||2.
Therefore the proof of the first part of Theorem 3.1 is complete if we show that

lim
n→∞

‖∇zn,i‖2
2 → ‖∇zi‖2

2 ∀ 1 ≤ i ≤ 2.

From (3.6), we have that

lim
n→∞

‖∇zn,i‖2 = lim
n→∞

|∇|zn,i||2 and lim
n→+∞

|∇|zn,i||2 = |∇|zi‖2
2.

Hence by the lower semi-continuity of | |2, we have :

‖∇zi‖2
2 ≤ lim |∇zn,i‖2

2 = lim |∇|zn,i‖2
2 = |∇|zi||22 (3.10)

Finally, replacing zn,i by zi in (3.3), we see that :

‖∇zi‖2
2 ≥ |∇|zi‖2

2 ∀ 1 ≤ i ≤ 2.

Now using (3.2), we know that zn,i → zi in
∑

C(R2). Thus zn,i → zi in
∑

C(R2) ∀ 1 ≤ i ≤ 2.
Proof of 2) Let z = (z1, z2) ∈ Zc1,c2 with z1 = (u1, v1) and z2 = (u2, v2).
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Let ρ1 = (u2
1 + v2

2)1/2 and ρ2 = (u2
2 + v2

2)1/2. By the latter, we certainly have that

∀ 1 ≤ i ≤ 2 ∀ 1 ≤ j ≤ 2

∫
R2

(
ui∂jvi − vi∂jui

u2
i + v2

i

)2

dx = 0 (3.11)

On the other hand
˜̂
E(z1, z2) =

˜̂
Ic1,c2 , which implies that there exists a Lagrange multiplier

α ∈ C such that ˜̂
E(z)ξ =

α

2

2∑
i=1

ziξ̄i + ξzi for all ξ ∈ C× C.

By elementary regularity theory and maximum principle, we can prove that ui and vi ∈
C0(R2) ∩

∑
(R2) and ρi > 0.

Set Ω = {x ∈ R2 : ui(x) = 0} then Ω is closed since ui is continuous. Let us prove that
it is also open.
Let x ∈ Ω. Using the fact that vi(x) > 0, we can find a ball B centered in x0 such that
vi(x) 6= 0 for any x ∈ B.
Thus for x ∈ B

(
vi∂jvi − vi∂jvi)2

u2
i + v2

i

= [∂j(
ui
vi

]2
v4
i

u2
i + v2

i

for 1 ≤ i, j ≤ 2.

This implies that ∫
B

|∇(
ui
vi

)|2 v4
i

u2
i + v2

i

= 0. (3.8)

Hence ∇(ui
vi

) = 0 on B ⇒ ∃ C such that ui
vi

= C on B. Since x0 ∈ B ⇒ C ≡ 0.

Therefore Ω is also an open set of RN . Hence we have proved that for 1 ≤ i ≤ 2, these are
two alternatives :

1. ui ≡ 0 or ui > 0 or R2

2. vi ≡ 0 or vi > 0 or R2.

Now let zi = eiσiwi, σi ∈ R, wi ∈ Wc1,c2 . Thus |zi|2 = ci and Ẽ(z1, z2) = Îc1,c2 . Then
{eiσiwi : σi ∈ R, wi ∈ Wc1,c2} ⊂ Zc1,c2 .

Conversely for zi = (ui, vi) such that (z1, z2) ∈ Zc1,c2 , set wi = |zi|. Then
˜̂
E(z1, z2) =

Ẽ(w1, w2) =
˜̂
Ic1,c2 = Îc1,c2 and (w1, w2) ∈ Wc1,c2 .

We now have four possible alternatives. We will discuss one in details, the three others can
be shown following exactly the same ideas.

Suppose that v1 and v2 6= 0 for all x ∈ R2.
In this case, it follows that ∇(ui

vi
) = 0 on R2.

Thus we can find 2 constants K1, K2 ∈ R such that

u1 ≡ K1v1 and u2 ≡ K2v2.

Therefore w1 = (K1 + i)v1 and w1 = |K1 + i||v1|.
Let θ1 ∈ R such that K1 + i = |K1 + i|eθ1 and let ϕ1 = 0 if vi > 0 and ϕ1 = π if v1 < 0 on
R2. Setting σ1 = θ1 + ϕ1, z1 = (K1 + i)v1 = |K1 + i|eθ1|v1|eiϕ1 = w1e

iσ1 .
Similarly z2 = w2e

iσ2 with w = (w1, w2).
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discussions.
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