ON SCHRODINGER SYSTEMS WITH
LOCAL AND NONLOCAL NONLINEARITIES - PART2

HICHEM HAJAIEJ

ABSTRACT. In this second part, we establish the existence of ground
state solutions of the nonlinear Schrédinger system diuidighe first
part when the diamagnetic field is nul. We also prove some stmym
properties of these kind of solutions.
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1. STUDY OF GROUND STATE SOLUTIONS

1.1. Introduction. In this section, we shall study the existence and sym-
metry of ground states for the following x m nonlinear Schrédinger sys-
tem without magnetic field, in presence of local an nonlocallimearities
(1.1)

m hl .
AR (= V()@ — g1l (91, [@?)B = 3 Wiy h(|@4]) 05 = 0

forl1 <j<m.
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2 H. HAJAIEJ

For every® = (®4,...,9,,) € H(R"), we define the energy functional

1 & 1
E(P) = §Z/|V(I>j|2d:):—§/V(|x|)|(l>|2dx—/G(|x|,|(I>1|2,...,|(I>m|2)dx
j=1

=3 3 [ Watia = s, sy

i,j=1

8SZG<‘CL’|, S1y ey Sm) = gz(|$‘, 8%, vy Sgn) Si.
We are interested to solve the following minimization peohl

o _ 1/mNy . 12
(1.2) L= inf £(®),  S.= {<1> € H (RY): ZI/|<1>J| _c},
P

wherec > 0 is a fixed number. We mention that in this paper, we will use
the same notation as in partl

2. MAIN ASSUMPTIONS
2.1. Assumptions on local nonlinearities.We assume that the following

conditions hold
(V0) V : RN — RT satisfies
V(|z|) > V(|ly|), forallz,yecRY with |z| < |y].
Moreover,
V(|z|) — 0, as|z| — oc.

(G0) G : (0,00) x R™ — R is a super-modular function, namely
(2.1)

G(r,y + hie; + hoej) + G(r,y)
(22) G(Tl,y+hlei) —|—G(7’0,y)
fori # j, hi,ha > 0,y = (y1,...,ym) and{e;} is the standard basis in

R™, r>0and0 < rg < ry.

(G1) There existsX > 0 such that, for al- > 0 andsy,...,s, > 0, we
have

(T, Yy + hlei) + G(’f’, Yy + hg@j)

> G
< G(r,y) + G(ro,y + hae;)

Z]-+2

m m 4
OSG(r,sl,...,sm)SK(Zsj+ZSj2 >, O<€j<N.
j=1 j=1

(G2)foralle > 0, there exist?, > 0 andS, > 0 suchthaty(r, s1,...,s,) <
ed ity s forallr > Ry andsy, ..., s, < So;
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(G3) Foranyr > 0, sq,..., s, andt > 1,
G(r,ts1, ..., tSm) > tG(r, 81, .., Sm).
(G4) There existB, v, Ry, S2 > 0 such that
G(r,s1,0,...,0) > Bs], foranyr > Ry, 0 < s; < Sy,

wherel <y <1+ 2.

2.2. Assumptions on the nonlocal nonlinearities.We need the following
assumptions

(h0) h : Rt — R is continuous, non-decreasing(0) = 0 and there
existsM > 0 such that

H N
h(s) < Ms" where 2 <y <2— o+ % withg> 3.

(hl) h(ts) > th(s), forallt > 1ands > 0.

(h2) There exist4,S; > 0 and3 > u such thath(s) > As”, for any
0 <s< Sl.

(W) W,;;: Rt — R* are non-increasing functions for ahy< 7, j < m.
(W1) There exist, C, ¢, > 0 such that

I
Wi G) > Ct—r, foranyr > 0,0 <t <t
T

where2N — NS —T'+2 > 0.
Remarks:

(1) As it was shown in [12], hypotheses (GO) to (G4) are optitna
prove the existence of a Schwarz symmetric minimizer. Maee p
cisely, it was proved in the scalar case that if one of the alhgy
potheses does not hold true, then (1.2) does not have a ragnmi
or no minimizer is radially symmetric or the minimizer is Sarz
symmetric only for bige.

(2) Assumptions ok do cover all cases which arise in applications.

(3) Itis a challenging open question to considigs as a finite orthonor-
mal family. All the steps used in the proofs below still apfithis
more delicated cases apart the last one.

(4) Model of nonlinearities ok andG are given in Part 1.



4 H. HAJAIEJ

3. SGN OF THELAGRANGE MULTIPLIER

We have the following

Proposition 3.1. Letc > 0 and assume that the minimization probl&i®)
admits a solutiorb € S, with negative energy, namely

E(@)=1,<0.

Assume furthermore that the function

=[Gl o, e Paes s S [ Wy @D ) dedy

2] 1
satisfies ove the condition
(3.1)  N'(®y,...,9,)(Dy,..., D) — 2N(dy,...,d,) > 0.
Let \. denote the Lagrange multiplier associated withThen), < 0.
Proof. Of course, we havé’(®) = \.®, so that
E'(D)(D) = A(D, D)2 = A D] 72 = eAe.

Then, we have

Ao — 21, = E'(D) (D) — 26(D) = —N'(D)(D) 4 2N(d) = 7

namely\. = % + 7 < 0,as7 < 0and/. < 0 by assumption. This proves
the assertion. O

Remark 3.2. Assume that the functioR™ > s — G(r,s) € RT is ho-
mogeneous of degree > 1 andW;;(z) = O forall ¢, = 1,...,m and
x € RY. Then condition (3.1) is satisfied. In fact, taking into asebthat
VG(s) - s =dG(s)(s) = oG(s), it follows that

N'(®)(P) — 2N(d) = /ZD G(lz], @112, .., [ ®m) )| |, 2 da

o 2/G(‘Jf|, |(i)1|27 SRR |(i)m‘2>dx

=2<g—1>/G<|x|,|<i>1|2,...,|<i>m|2>dx >0,

which proves the desired claim. The homogeneity-ois often fulfilled
in the applications. Think, instance, to the literature afakly coupled
nonlinear Schrodinger systems.
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Remark 3.3. Assume that the function— h(s) is homogeneous of degree
1 > 2 and thatz = 0. Then condition (3.1) is satisfied. In fact, taking into
accountthab’(s)s = ph(s), by direct computation, exchangingnd; and

x with y, it follows that

N'@)(®) ~2N(@) = 5 3 [ Wil = y@@))H(2,0) D18 (1) ddy

ij=1

53 / / Wis(lz = yDh(1D; () D' (| @4(2) I @i ) [drdy

i,j=1

=30 [ Wotle = D@D )y

i,j=1

= 3 [ Wil = Dr1@ D)) 80

ij=1

=3 [ Wothe = D @D )y

— (=1 Y [ [ Wille = yDh( i) Do) dody > 0

which proves the claim. The homogeneity lofis often fulfilled in the
applications. Think for instance to the literature of thekar-Choquard
equation withi(s) = |s|*, being the classical formulation in the particular
caseu = 2.

4. EXISTENCE AND SYMMETRY OF SOLUTIONS

We have the following

Proposition 4.1. Assume conditions (V0), (G1), (h0) hold. Then, for all
¢ > 0, problem(1.2)is well-posed, that ig. > —oc.

Proof. Let® € S... In the following, we shall denote by a generic positive
constant, possibly depending enthat can change from line to line. From
assumption (G1), we have

(4.1) / G(lz|, |@1 2, .. [Pz < C+C |05 15

j=1
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From the Gagliardo-Nirenberg inequality, and sifiég|| ;> < /c, we have
NY;

P, Z+2<C® (1—0;)(€;+2) V<I> 0J5+2<qu) o;(4+2) _
15 15l 2 IV, IVe;[2 " o 30+ 2)

£;42

for ; = 1,...,m. Notice that, by assumption, we have

NV,
aj(€j+2):73<2, forj=1,....m

Then, by means of Young inequality, for all> 0 there exists<;(¢) > 0
such that

042
4.2) ||‘I> ||z 12 < Ki(e )+5||V(I>j||%2-

In turn, inequality (4.1) yields
@3) [ Glal 0 B < Ki(e) 23 [ 2
j=1

for some positive constant’;(¢). Dealing with the nonlocal nonlineari-
ties, from assumptio(.0), by the Hardy-Littlewood inequality combined
with the Gagliardo-Nirenberg inequality, for any; = 1,...,m, since
max{||Wijllzs 14,7 =1,...,m} < oo, LY is defined as in [Chap 4, 10].

Setting
2 N (gp-2
T TR ( gu ) ’
for everye > 0 there existd<,(¢) > 0 such that

a9
' [ Wille = b2 @2, w)dady < € 3 19l 10 201

w 1 i,j=1

<C Z 1P 1700 @110 < € Z 13l1 5 V@751 1 5 1V D5 175

z'j—l 4,7=1
<C Z V][ 75[[VP[72 < CZ IVE[|7) < Ks(e) + &Y |[V[7,
i,7=1 =1

where in the last inequality we used Young Inequality singelr assump-
tions ony in (h0), we have

i — 2 -2 1
q q
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Then, fixeds € (0,1/4), by combining (4.3) and (4.4), by the definition of
£ and denoted by = V' (0) > 0, we have

(4.5)

£(@) 2 %Z IV]z: - §Z 125172 — /G(Ix\, D112, .., |Bo]?)de
N %Z; // Wi (|2 —y)h(|®i(x)|) (| ;(y)|)dzdy

(4.6)

1 = pc pc
> (5 - 25) D Vel - o5~ Ki(e) = Ka(e) 2 =5 — Ku(e) — Ka(e).
j=1

forall ® € S,, yielding the desired conclusion. O

The next proposition shows that, even in the limiting casilk respect
to the growths of the local and nonlocal nonlinearities thaimization
problem is well posed, provided that the infimum is taken @sphere of
sufficiently small radius.

Proposition 4.2. Assume conditions (VO0), (G1), (h0) hold and that

. 4 1 2
either?;, = Nforsomejo:1,...,moru:2——+N.
q

Thenl. > —oo for everyec > 0 sufficiently small.

Proof. Let ¢ > 0 and taked € S.. In the following, we shall denote by

a generic positive constant which can change from line t® #nd which

is independent of. In fact, differently from the proof of Proposition 4.1,
here we need to putinto evidence in the estimates in order to show that
problem (1.2) is well posed, for all sufficiently small. Assume that there
existsl < j, < m such that/;, = % (and that?; < 4/N for all j # jo).
Recall that||®;,|| .2 < v/c. From (G1), the Gagliardo-Nirenberg inequality
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and (4.2) (holding, indeed, when < 4/N), we have

Zj +2 “ f]‘+2
/G(|x|, |‘1>1|2> cee |(I)m|2)d1' <C+ C||(I)jo||zj2+2 +C Z ||(I)j||zj+2

Jj#jo
4 2 . 2
< CH+ Ol IV, 172 + Kie) +2 ) IV
Jj#jo
< Ki(e) + CeN [V, |12 +e > VO3
J#jo
< Ky(e) + max{Cc¥ e} Y ||V 3
j=1

for some positive constarif; (¢) depending or. Concerning the nonlocal
nonlinearities, we observe that,if< 2 — 1/¢ + 2/N, we are in the case
of the proof of Proposition 4.1 and we have inequality (4l#)Jnstead, we
are in the limiting case = 2 — 1/¢ + 2/N, for ¢ = % it holds

I Nq
uw  2Nq¢—N+2¢

In turn, by Hardy-Littlewood and Gagliardo-Nirenberg in@djties, we have

’y:

P> // Wis(lz = y1)h(|s() (| @5 ()| dardy

1,j=1

1— 1—
<O @SV D 2|05 SV, 2

ij=1
< CTN VP |2 VB |2 < Cl 1Y [V 7.
i,j=1 i=1

In any case, by (4.4) and the above inequality, we can always w

5 3 [ Wallz=sh (@)A1, ) dody < max(CeO%, 2} 3 [V Ka(e),

ij=1 i=1

Then, by the definition of and previous inequalities, denoted py=
V(0) > 0, we have

£®) > (5 —max{Cef e} —max{Ce =, }) 37|V, 3 — 2 — Ki(e) — Kole),

Jj=1
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forall ® € S.. By choosing: > 0 andc > 0 so small that

1
3~ max{Cc¥, e} — max{Cc1™¥ £} > 0

itholds&(®) > —& — Ki(c) — K»(¢) and the assertion follows, namely
there existg, > 0 such that the minimization problem is well posed for all

cc (O,CQ). Il

The next proposition says that, at least under suitablexgstsons, which
include some classical situations, suchhéas) = s*, W;;(x) = |z|~, with
a > 0and

1 m
G(|l’|, S1y+ 4, Sm) = H—Q Z |3i|(é+2)/2 + 2|$i|(€+2)/4|5j|(6+2)/4,
i,j=1

the upper bounds ofy and. are optimal for the minimization problem to
be well posed.

Proposition 4.3. Assume {(0) and that either there exists a functidh :
R? — R, homogeneous of degréagz with ¢ > 4/N, such that

G(|z|,s1,...,5m) > H(s1,...,5m), forall (si,...,sn) € R}

or there exist two constants, v, > 0 such that, for someé < iq, jo < m,

. 2
Wigio () > m|z|~ andh(s) > yps* for all z € RY ands € RT, with u > 2 — % + N

Thenl, = —oo for everyc > 0.

Proof. We consider the case when both the situations indicatectisttte-
ment occur, the proof being similar in the other cases. d.et 0 and
consider a fixed functio®, in S.. For allt > 0, we define the func-
tion ®, : RN — R™ by setting®!(z) = t"/2®!(tz) for all z € RY and
j=1,...,m. Itfollows that®, € S.for all t > 0, so that, by definition of
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1., it holds for allt > 0 large

1 — : m
L E@) <53 IVl — [ Gllal. 0}F.... 87 F)da
=1

=3 3 [ Watia = sl (o) sy

1,j=1

12 & . Ne m
<5 DIV~ ¥ [ HRP,...Jop s
=1

2 .
e [y o) )y

< Ot? — Opt's — CgtetNi=2N 4 o
< Cltz . C5tmin{¥,a+N,u—2N} + 04.

By assumptionmin{%, a+ Nu— 2N} > 2 and the assertion follows by
lettingt — oo. U

Proposition 4.4. Assume condition3/0), (W), (h0), (G0), (G1) and (G2)
hold. Then, for every > 0, problem(1.2) admits a minimization sequence
(®,,) having a Schwarz symmetric weak lirhif such that€ (®,) < I.

Proof. Let®,, € H'(R") be a minimizing sequence for (1.2). Sinte|®,, ;|||z> =
V@, ;||2, we have thaE (|®,|) < £(®,) so that|®,| is a minimizing se-
guence too. In turn, without loss of generality, we may asstimat the min-
imizing sequence is positive. Denoted &y the sequence of the Schwarz
symmetrizations of?,,, we claim that€(®}) < £(|®,|) so thatd} is also

a minimizing sequence for (1.2). In order to prove it, we talgantage of

the following symmetrization inequalities. By [9], forayej = 1, ..., m,

IV e < V@l

127, 51172 = (1Dl
From the last equality, it follows that, #, € S., then also®’ < S..
Moreover, in view of assumptio/0), we have that

[visne, < [vie;,>

Furthermore, in view of the super-modularity assumpti@a)( we have

[ el @ 2 e < [ Gl (8,7 (8,02
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and, by assumption$i() and (0), it follows
[ [ Wollr—sh (@ @)@y @) dody < [ [ W10y Dh(@; (0)h(;, ()

for every anyi,j = 1,...,m. We shall denote bﬁ)n = ®* a Schwarz
symmetric minimizing sequence for (1.2). Observe thatis bounded in
H'(RY). Indeed, if this was not the case, from the following inegyésee
inequality (4.5) in Proposition 4.1), as— oo, denoted by = V/(0) > 0,

I+ o(1) = £(®,) > <_ —2) Z 19,022 — 22— Ki(e) — Kale)

fore € (0, 4) we would immediately get a contradiction. Hence, up to
a subsequence, there exidts ¢ H'(RY) such thatd,, converges tab,
weakly in H!(RY), locally strongly inL? for s < 2* and almost everywhere
in RY. We will prove that

(4.7) E(Dg) < 117ggf5(€f>n).
Forallj =1,...,m, we know that

(4.8) /\V@O,jﬁ < liﬁgf/\vzﬁn,jﬁ.
Now, let us prove that, for every=1,...,m,

(4.9 ti [ V(@2 = [ V(e

(4.10) hm/ (||, @nl,...,ég,m):/ (||, @31, .., D2 ,),

andforalli,j =1,...,m,
(4.12)

tim [ Wi = s @as ) = [ [ Wil = yDb@os(o) (0 1)

First, we prove (4.9). Fixed? > 0, denote byB(R) the ball of radius
R centered at the origin. Since, ;(x) — &g ;(z) for a.e.z € B(R)
and there exists a functidn € L2(B(R)) such thatb, ;(z) < b;(z) for
a.e.x € B(R), by the monotonicity assumption dnin (1/0), we have

(4.12) hm / \x| / V(|$\)\<I>07j\2,
B(R)
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by dominated convergence. Now, fix> 0 andj = 1,...,m. Since
V(|z|) — 0 as|z| — oo by assumption(0), there exists?(¢) > 0 such
that, for all|z| > R(¢) and for everyn € N

/ V(|a))®2, < 5/ o2 < ec.
Be(R(e)) Be(R(e))

Furthermore, in a similar fashion, we have that
/ V(j2)82,(x) < ec.
Be(R(e))

By means of (4.12), choosing = R(e), there exists. € N such that for
everyn > v,

<E€.

[ Vi, - [ vaad,
B(R(¢)) B(R(¢))

Thus, by combining the above inequalities, (4.9) followswiwe show (4.10).
Fixed R > 0, it holds

(4.13)
lim G(lz], ®2,,...,02,,) = G(|z], [®oal?, - s [Poml?).
"o Jp(R) B(R)

Indeed,@)n,j(x) — @ ;(z) for a.e.z € B(R), and there exist: functions

f; € L*2(B(R)) such thatb, ;(z) < f,(x) for a.e.z € B(R). Of course

G(|z|, ®2 (2), ..., P2, (x)) converges pointwise 6(|z|, [Po1|*(x), .. ., |Pom|*(z))
in B(R) and, from (1),

Glle), 82, 82,) < K( D124+ 3 £7%) e L'(B(R),
j=1 j=1

Assertion (4.13) then simply follows by dominated convexge Fixed: >
0, in light of [1, Lemma A.IV] and assumptiorGR), there existR(s) >
Ry > 0 andsS, > 0 such that, for allz| > R(e), ,,;(x) < S, for every
j=1,...,mandforalln € N. Hence, by (+2), we have

/ Gle), 32,,...,82,) < 52/
Be(R(¢)) j=1

Now, observe that, since, ;(x) — () a.e., alsab ;(z) < S, for all
|z| > R(e). Then recalling that als¢ f ; < ¢, we obtain

/ G(|z|, 53,1, o 637,”) < ec.
B¢(R(¢))

H2
®,, () <ec.
(R(e))
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By means of (4.13), choosing = R(¢), there exists. € N such that, for
alln > v,

/ G(Jal, <I>n1,...,<1>i,m>—/ Glel, @2, ..., 82,)| < e.
B(R(g)) B(R(g))

Hence (4.10) is proved too. Finally, we come to the proof o113 We
know that, sinceb,, ; is a sequence of radial functions, boundedi{R"),
by [1, Theorem A.I'], uptoasubsequen&e,,] — @y strongly inL(RY)
asn — oo, whereg = 5= and2 < gu < 2*. Then, there exists a func-

tiona; € Li*(RY) such that,@n,](x) < a;(z) for a.e.x € RY. By the
continuity ofh, for a.e.z, y € RY we have

Tim Wi (|2 = y A1 i(@) (| (9)]) = Wi (|2 = yDh(| Do) ) Al B0 (9)]).
Furthermore, since is non-decreasing, we have for asey ¢ RY

Wis(Jz = y A @i (2) DR (1)]) < Wil = yDh(as(a))(as ()

where the right hand side function isif(R?") by means of Hardy-Littlewood
Sobolev inequality

[ Wille = oo s Dy < oo Wil sl ey

Then, by (4.8)-(4.11), (4.7) is proved. This yielfi&b,) < I., concluding
the proof. O

Proposition 4.5. Assume conditions3), (k0) and (.1). If I. < 0, then
E(Py) = I, for everyc > 0.

Proof. In view of Proposition 4.4, we know th&t{®,) < 1. and||®y]|7, <
c. Itis sufficient to prove thad, € S.. First, we observe that, by) and
(h), £(0) = 0 then®, # 0. Otherwise, by the negativity assumption bn
we would have

0=E¢& (<I>0) <I.<0,
then a contradiction. Define = H<1> ” , we have that®, € S, and, by
| @072 < ¢, t > 1. So, by (G3), (h1) and Proposition 4.4, we have that

E(tPy) = ZHV ] ZV Mt®o72 — /G 2], @55, . .., 205, ) d

SIS [ Wl = ey )z < e <

2]1
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Thus,I. < t21, and, by the negativity assumption énwe have that < 1.
Hencet = 1 and by the definition of, ||®||3, = ¢ thus proving the thesis.
O

5. NEGATIVITY OF 1.

The following results provides sufficient conditions in erdo get the
condition that the minimum value is negative for all valués.o

Proposition 5.1. Assume condition3/0), (W1) and either condition@4)
or condition (:2). Thenl. < 0 for all ¢ > 0.

Proof. In the following we shall assume botli-¢) and ¢2). It will be
clear by the argument that follows that only one of these ragsions is
actually sufficient to provide the desired conclusion. @ive> 0, we fix

a positive functionp in L>*(RY) such that|¢||2, = c. Then, settingd =
(¢,0,...,0) € HY(RY), of course we, hav® € S.. Now, for all0 <

t < 1, let us definep,(z) = t"%2¢(tz) and setd,(z) = (¢,(x),0,...,0).
Clearly, ||¢¢||3. = cand®, € S, forall0 < ¢ < 1. If we now evaluate
the energy functionaf at ®;, by a change of variable and exploiting the
assumptions, for every < ¢ < min{t, RLQ} sufficiently small, we have
that

0 < ") <tVP|g| e < 51, 0 <tV (x) < tV]]|7 < S

with S1, Sy and R, in assumptions@4) and (:2) so that
&(@) =5 [ Vo) do =5 [ V(iahita) o~ [ Gllal. 62(0),0...... 000
=5 [ Wl = Db ) dady

_ §/|V¢(x)\2dx— %/v (@) #*(z) d:c—t—N/c;(@,t%?(x),o,...,o)dx

—2N _
= [ () et ne o) dady

¢ 2 -N lz| o
< 5/\%(:5)\ dz —t /{x>l}G<T,t ¢ (:c),O,...,O)dx

t—ZN

5 [ i () e oapne o) dady

< Dt? — Bt~ NN — VNS
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where we have set

B B
D = %HVMFL% E = B/ oPdx, F .= A*C dedy.

{al1) =y
In conclusion, for small enough, we get
I.<E(D) < 2 (D _ Ny N-2 FtF+NB—2N—2)7
where, by the assumptionsof3 andTl’,
Ny—-N-2<0 and I'+ Ng—-2N —-2<0.

By takingt > 0 sufficiently small, we have that < £(®;) < 0, proving
the assertion. O

Remark 5.2. Notice that, ifi¥ is a typical convolution kernel of the form
W (z) = |z|7", it follows thatW belongs to the spack (R") whereq =
&. Moreover, thinking about the important model situatiga) = s, we
haves = . Then, we have

N 1 2
'+Nf—2N-2<0 < E+Nu—2N—2 <0 & u< 2_5+N’

which is the condition ok we are already familiar with.
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