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Abstract

Let o € (0,1), Q be a bounded open domain in R (N > 2) with C? boundary 9
and w be the Hausdorff measure on 9€2. We denote by g%‘j a measure

(T = /| PI@) o), 1 e @),

o e

where 71, is the unit outward normal vector at point x € 9€). In this paper, we prove
that problem

(—A)u+g(u) =k%# in Q, 01)
u =0 in QF .

admits a unique weak solution wuy under the hypotheses that £ > 0, (—A)® denotes the
fractional Laplacian with « € (0,1) and ¢ is a nondecreasing function satisfying extra
conditions. We prove that the weak solution of (0.1) is a classical solution of

(=A)*u~+g(u)=0 in Q,
u=0 in RN\Q,
limgeq o0 u(r) = +o0.
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1 Introduction

1.1 motivation

Let Q be a bounded open domain in RY (N > 2) with C? boundary 9f2. The pioneering
works [13, 16] obtained that the nonlinear reaction diffusion equation

—Au+ h(u) =0 in  Q,
u=-4+00 on O]

(1.1)

admits a solution if A is a locally Lipschitz continuous function which is increasing and
satisfies Keller-Osserman condition

[ ™ s < 400,

Great interests in existence, uniqueness and asymptotic behavior of boundary blow-up so-
lution to (1.1) have been taken, see [1, 9, 11, 14, 19, 20, 15]. It is well known that when
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h(s) = s” with p > 1, (1.1) has a unique solution with boundary asymptotic behavior
p_ﬁ(a:), where p(z) = dist(z, 09).

Comparing with the Laplacian case, a much richer structure for the solutions set appears
for the non-local case. Recently, the authors in [5] obtained very different phenomena of the
boundary blow-up solutions to elliptic equations involving the fractional Laplacian, precisely,

(=A)*u+ [uffu = 0 in Q
w = 0 in Q (1.2)

lim  wu(x) = 4oo,
zeQ,x—00

where p > 0 and the fractional Laplacian (—A)* with a € (0, 1) is defined by
(=A)%u(z) = lim (=A)u(z),

e—0t

here for € > 0,

(—A)%u(z) = _/R Mdz

N\B.(z) |2 — [N T2

The existence of boundary blow-up solution of (1.2) is derived by constructing appro-
priate super and sub-solutions and this construction involves the one dimensional truncated
Laplacian of power functions given by

too HIL =t 4+ (1+8)7 -2
C(T):/ X @)1=t + (1 +17)
0

t1+2a

dt, (1.3)

where 7 € (—1,0) and x(o,1) is the characteristic function of the interval (0,1). It is known
that there exists a unique zero point of (1.3) in (—1,0), denoting 7o(cr). Then

Proposition 1.1 /5, Theorem 1.1] Assume that 2 is an open, bounded and connected do-
main of class C? and o € (0,1). Then we have:

Existence: Assume that 5
o

mo(a)’

the equation (1.2) possesses at least one solution u satisfying

1+2a<p<1—

0 < liminf u(:zc)d(yc)z%1 < limsup u(az:)d(az:)l%1 < +o00. (1.4)
zE€Q,x—00N z€Q,z—Q
Uniqueness: u is the unique solution of (1.2) satisfying (1.4).
Nonexistence: In the following three cases:
i) For any T € (—1,0) \ {—2%, 7o(a)} and

p—

200
1+2a0<p<1— or
To(a)
ii) For any T € (—1,0) and
200
p>1-— or
To(a)
iii) For any 7 € (—1,0) \ {ro(a)} and
I <p<T1+20q,



problem (1.2) does not have a solution u satisfying

0 < liminf wu(x)d(z)™" < limsup u(x)d(zx)™ " < 4o00. (1.5)
z€Q,x—00Q 2€Q,x—0Q

Special existence for 7 = 7y(a). Assume that

200 1o(a)+1 20
1— 1 1——-
max{ 0] + @) t<p< o)

Then for any t > 0, there is a positive solution u of equation (1.2) satisfying

li “role) — ¢,
ehiton ()T =

There are some challenging questions to ask:
1. Could 1o(cv) be expressed explicitly?
2. With what condition of general nonlinearity makes existence hold?

3. The uniqueness and nonexistence restricts in the class functions (1.4) and (1.5), so are
there some solutions breaking the assumption (1.4)?

Our interest in this article is to introduce a new method to study the boundary blow-up
solutions of semilinear fractional elliptic equations and answer above questions. The main
idea is to find suitable type measure concentrated on the whole boundary and then by making
basic estimates to prove that the corresponding weak solution solves (1.2). Our first result
is stated as follows:

Proposition 1.2 Let o € (0,1) and 1o(«v) is the zero point of C(-) when C(-) given by (1.3),
then
To(a) =a—1.

2 in Proposition 1.1 turns out to be 14:_3 In

We observe that the critical value 1 — Tf—a il
what follows, we would like to show the detaifs of our new method and answer the second

and third questions in the following.

1.2 A new method and main results

Let o € (0,1) and w be the Hausdorff measure on 9. We denote by 25 a measure

one

0%w 0“f(x)

(o ) = dofe),  fECUD),

o Ong
where 77, is the unit inward normal vector of 9€) at point x and

o flw) i) = f@)

8ﬁg t—0+ te

In this paper, we are concerned with the existence and uniqueness of weak solution to the
semilinear fractional elliptic problem

_ 1.0% ; 0

(—A)u+g(u) = k5= in Q,

u =0 in Qe

(1.6)



where £ > 0 and ¢ : R, — R, is continuous.
In [6], the authors studied problem (1.6) replaced gf;j by & 5z« where v is a Radon measure
concentrated on boundary measure. They proved that such a problem has a unique weak

solution if ¢ is a continuous nondecreasing function satisfying g(0) > 0 and

/ g(s)silf%ds < +o0. (1.7)
1

Moreover, [6] analyzed the isolated singularity of weak solution of (1.6) in the case that
v = 0,, with ¢ € 0{2. Our aim in this article is to investigate how the Hausdorff measure
on 0f2 works on the weak solution of (1.6).

Before starting our main theorems we make precise the notion of weak solution used in
this note.

Definition 1.1 We say that u is a weak solution of (1.6), if u € L'(Q), g(u) € L' (2, p*dx)
and
0°¢(x)

oq 0Ny

[ =807 + g(welds =k
where p(x) = dist(z,00Q) and X, C C(RYN) denotes the space of functions & satisfying:
(i) supp(§) C Q

(17) (—A)*¢(x) exists for all x € Q and |(—A)*¢(z)| < C for some C > 0;

dw(z), Ve € X,.

(iii) there exist ¢ € L' (2, p®dz) and g9 > 0 such that |(—A)*¢| < ¢ a.e. in Q for all
e € (0,¢e).

Now we are ready to state our first result for problem (1.6).

Theorem 1.1 Assume that k > 0, p(z) = dist(z, 02) and g is a continuous nondecreasing
function satisfying g(0) > 0 and

/ g(s)s_l_%ds < +00. (1.8)
1

Then (i) problem (1.6) admits a unique positive weak solution uy;
(17) the mapping k — uy, is increasing and there exists ¢, > 1 independent of k such that
k
—p(2)* ! < ug(x) < crkp(x)* Vo € (1.9)
C1
(ii1) if we assume additionally that g is C7 locally in R with B > 0, then uy, is a classical

solution of
(—A)*u+g(u) =0 in Q,

u=0 in RM\Q, (1.10)
hm;tEQ,w—ﬂ?Q u(x) = +00.

We remark that in Theorem 1.1 extends the special existence of boundary blow up solu-
tions to fractional elliptic equation (1.10) with general nonlinearity ¢ in integral subcritical
case with the critical exponents 1 HO‘ with is larger than N +°‘ Specially, letting g = 0, there
exists infinitely many boundary blow up a—harmonic functlons

Since a —1 > _pzTal’ so we may call the solutions of (1.10) as the weak boundary blow-up
solution from the asymptotic behavior (1.9). Our second interest is to consider the limit of
weak boundary blow-up solutions.



Theorem 1.2 Let g(s) = s* with p € (0,132) and uy, be the weak solution of (1.6), then
(i) if p € (1 + 2, 122), then the limit of {u} as k — oo ezists, denoting uo, which is a
classical solution of (1.2). Moreover, us satisfies

1 _ 2a _ 2«

C—p(ac) 1 < Uo(z) < cop(z) 71, Vo € €, (1.11)
2

where cg > 1.
(it) if p € (0,1 + 2a], then

lim () = 400, Vz € Q.

k—o0

We notice that the limit of weak boundary blow-up solutions is the solution of (1.1)
with behavior (1.4) when p € (1 + 2a, 1*2) stated in Proposition 1.1. As a consequence of
Theorem 1.2 (ii), p € (0,1 + 2a], there is no solution u of (1.1) such that

: 1-a —
xeggeﬂu(x)p (x)=0 or + oo.

From [6] and Theorem 1.1, the Dirac mass and Hausdorff measure have different contri-
bution to the solution of
(=A)*u+g(u) =0 in Q.

Our interest is to understand what singularity of the solution to

(~A)u+ glu) = T8 0,
b i (1.12)
u=>0 in Q¢

where xy € 02 and d,, is the Dirac mass concentrated z, on the boundary. Inspired by
Definition 1.1, it is natural to give the definition of weak solution of (1.12) as following.

Definition 1.2 We say that u is a weak solution of (1.12), if u € L*(Q), g(u) € L' (2, p*dx)
and
9°¢(x) 9°€(xo)

— — )
oq Oy Oz,

dw(z) +

LAMPAW€+ﬂwamﬁ= VE € X,

Theorem 1.3 Assume that o € 052, g is a continuous nondecreasing function satisfying
9(0) =0,

/ g(s)s‘l_Hds < 400 (1.13)
1
and for some A > 0,

g(s+1) < Ng(s) +g(t)], Vs, t>0. (1.14)
Then problem (1.6) admits a unique positive weak solution v such that

]gmmsa{M@w“ﬂf¥%W

l p(x)a—l + p('r)a

, Vo € (. 1.15
c3 |z — xo|N v (1.15)
Moreover, if assume additionally that g is C® locally in R with 3 > 0, then v is a classical
solution of (1.10).



From Theorem 1.3, we find out a classical solution of (1.10) with explosive rate p(z)*~1 +
|f_(?OTN» this answers the question 3 in the first part of the introduction.

The boundary blow-up solutions of (1.10) could be searched for by making use of mea-
sure type data on boundary and the main difficulty is to do the estimate of G,[2-%] and

9(Ga[%2]). Especially, it is dedicate to make the estimate of g(G[3-2]) near the baonundary
when the nonlinearity g is just integral-subcritical, i.e. (1.8).

This article is organized as follows. In Section §2 we present some preliminaries to the
Marcinkiewicz type estimate for Ga[g%fj] and present the existence and uniqueness of weak
solution of (1.6) when g is bounded. Section §3, §4 are devoted to prove Theorem 1.1 and
Theorem 1.2. Finally, we obtain one typical solution that blows up along the boundary with

different power rate.

2 Preliminary

2.1 The Marcinkiewicz type estimate

In order to obtain the weak solution of (1.6) with integral subcritical nonlinearity, we have
to introduce the Marcinkiewicz space and recall some related estimate.

Definition 2.1 Let © C RY be a domain and w be a positive Borel measure in ©. For
k>1, K =kr/(k—1) andu € L} (0,du), we set

loc

||| arx(0,dey = inf {c € [0,00] : / luldw < ¢ (/ dw) ’ , VECO, E Borel} (2.1)
E E

and
M*(©,dw) = {u € L,(0,dw) : ||ul|s=©,dm) < +o0} (2.2)

The space M*(0©, dw) is called the Marcinkiewicz space of exponent k, or weak L"-space
and ||| ar=(0,dw) is a quasi-norm.

Proposition 2.1 [2, 7] Assume that 1 < q¢ < k < 00 and u € L},.(©,dw). Then there
exists ¢4 > 0 dependent of q, k such that

1—q/k
[ 1utttz < cauloe [ )
E E

for any Borel set E of ©.

Denote by G, the Green kernel of (—A)* in Q x Q and by G,[-] the Green operator
defined as "
w

Ga[%](x) = t1_1>10n+ o Golz,y + ity )t “dw(y).

Our purpose in this subsection is to do Marcinkiewicz type estimate for G [5=&

Lemma 2.1 There exists ¢ > 1 such that for any x € QQ,

1 1 0%w
i « <
C5p(x) — Gﬂé[aﬁa

J(2) < espla)*". (2.3)




Proof. Since 90 is C?, then there exists ¢ty € (0,3) such that for any z € @, := {z €

Q, p(x) < t} with ¢ < ¢y, there exists a unique x5 € 092 such that

|z — x| = p(2)

and for t € (0,1)) letting
Ci={reQ: plx) =t}

C; is C? for t € (0,19) and any Borel set E; in C;, there exists unique set E C 9 such that
€l for ze€F.
In fact, for z € C; with t € (0,%y), there exists a unique zy € 02 such that
r =1, + 29 and |r—xy| =1t = p(z).
Denotes by w; a measure on C; generated by w such that for ¢ € (0, t),
wi(Ey) = w(E) for any Borel set E; C C;. (2.4)

By compactness we only have to prove that (2.3) holds in a neighborhood of any point
Z € 092 and without loss of generality, we may assume that

rp=0 and 17, =en.

From [6, Lemma 2.1], there exists ¢g > 0 such that

80&
Ga[—w ) S/ L]V_dw(y), Vo e Q. (2.5)
o v —y[¥=

Let ¢ : B (0) — R such that (y',¢(y') € 92, where B; (0) is the ball centered at origin
with radium ¢, in RV, We choose some sy € (0,to) small enough, there exists ¢; > 1 such
that for any Borel set £ C By, (0) N 09,

1
—|E'| <w(E) < | ],
C7

where
E'={y eR": (y.¢(y)) € E}.
For sy > 0 small, there exists ¢g > 0 such that for y = (', yn) € Bs,(0) N OS2
ltex =yl = eslten — (', 0)] = es v/ 82 + |y |?

Therefore,

IN

1 1
SR e
/Bso(O)ﬁaﬂ tex —y|Ne By (009 (12 + ly 2)"
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where ¢ = f0+oo ﬁds < +00 since Q_TO‘ > % For y € 00\ Bs,(0), there exists ¢12 > 0

such that |[tey — y| > ¢1280, then

1
/ —N_adw(y) < clgsg“N/ dw(y) < 1955 Nw(09).
90\B., (0) |ten — Yl 99\ By, (0)

Therefore, for t € (0, ty),

1
————dw(y) < cppt™ .
/asz tey —y|N -

For z € Q\ @ and y € 99, we observe that |z — y| > to, then [, de(y) is

bounded by some constant dependent of ¢, and the diameter of €, thus, (2.3) holds.
We now prove that for ¢ € (0, t),

(2.6)
For all s € (0, %), we have that

t
ltex —y| > 5 for y € CsNBe(sen).

Therefore,

t 1
teny —y| > 575 max{p(y), p(ten)}

and apply [4, Theorem 1.2] to derive that there exists ¢;3 > 0 such that for all s € (0, é)

p*(y)p°(ten) ts®
Galten,y) > cis=———"——v> = Ci37——» € C,NB: . 2.7
(ten,y) > c13 ten —yN 613|teN—y]N Y 4(seN) (2.7)
Thus,
ta
Gals™ wsl(ten) > 013/ ——dw,(y).
CuNBy (se) lten —y|N
Denote

Dis=CsN Bi(seN) and D, =00QnN Bi(O).

We observe that
ltey —y| < ciat, Vy € Dy

and

1
— N < wy(Dry) < gt
C14

where ¢14 > 1, then for any s € (0, §)

t* ¢
O / e ()
L = [

> ci5tt Nwy(Dyy) > et

which implies (2.6) by passing the limit of s — 0. O



Proposition 2.2 Let Ga[g%j] given by (2.5) and p* = i—g Then there exists c17 > 0 such
that
0%w

HGQ[%]HMP* (Qpedz) < C17- (2.8)
Proof. For any Borel set E of () satisfying
0 <|E| < Q]
where Q, = {x € Q, p(x) <r} for r > 0, there exists t € (0,%) such that
|E] = (€.

Then there exists c¢;g > 0 such that

t
|Qt| = / Wt(ct)dt S Clgt.
0

We observe that
|E\Qt| - |E|—|EﬂQt| = |Qt\E|

and

ply) <plz), Yye E\Q, V2 Q,\ E.

t
/po‘dx > / pa(x)d:r;:clg/ / s%dwyds < et
E oy 0 Je,

and together with (2.3), we deduce that

[elgm@r@i < [ [ i

< e / PN (2)de < e / 2 (2)da
F

Q4
t
= 022/ / 27 dweds = cost®®
0 s

2

< 623(/ Padff)lTa"“,
E

Then

where g9, co3 > 0. Therefore,

o~ 20
/EGa[aﬁi](x)pa(x)dx < cog| | THa.

Together with

2 pr—1
l+a  p
we derive (2.8). This completes the proof. O



2.2 Existence for bounded nonlinearity

We extend Hausdorff measure w to Q by zero inside €, still denoting w. For bounded C?
domain, it follows [18, p 57] that w is a Radon measure in 2. In the approximating to weak
solution of (1.6), we consider a sequence {g,} of C'' nonnegative functions defined on R
such that ¢,,(0) = ¢(0),

In < Gnt1 < g, sup gn(s) =n and  lim [lg, — gl[rze my) = 0. (2.9)
sER4 n—00
Proposition 2.3 Assume that {g,}n is given by (2.9). Then
—A)u+ g,(u) = kL2 in Q,
(-2 u -+ gulu) = k2 o0

u=20 in Q°

admits a unique positive weak solution uy,, satisfying
(i) the mapping k — uy,, is increasing, the mapping n — uy, is decreasing

0%w 0w 0w
_ — < < ; .
kGa[aﬁa](as) kGa[gn(k‘Ga[aﬁa])](x) < upn(x) < l{:Ga[aﬁa](m), Vo e () (2.11)
(1) ugn is a classical solution of
(—A)*u + gn(u) =0 in €,
u=0 in RY\Q, (2.12)

limgeq 200 u(r) = +oo.

Proof. Since w is a Radon measure in ), we could apply [6, Theorem 1.1] to obtain that
problem (5.6) admits a unique weak solution wy, satisfying that (i) and wuy, is a classical

solution of )
(=A)*u+ gp(u) =0 in €Q, u=0 in RY\Q.

From Lemma 2.1 and (2.11), there exists coq > 1 such that

1
—p(2)* 7 < upp(x) < eup(x)*t, 2 EQ (2.13)
C24
Therefore, uy, is a classical solution of (2.12). O

In particular, let gy = 0, we have that

Corollary 2.1 G,[5:4] is a classical solution of

(=A)*u =0 in €,
u=0 in R\ Q, (2.14)
lim,eqp—a0 u(r) = 4-00.

With the help of Corollary 2.1, we are in the position to prove Proposition 1.2.

Proof of Proposition 1.2. We first prove that 7o(a) < a — 1. Inversely, if 79(a) > o — 1,

then we have that
200 14+«
1-— > > 14 2a.
(a) 11—«

10



On the one hand, it follows by [5, Theorem 1.1] that for p = i—g, problem

(=A)u+ |ufflu=0 in Q
w=0 in RV\Q, (2.15)

hmeQ,x—@Q U(ZE) = +00

admits a solution w such that

1
— <w(z)p'*(z) <5, TEQ,
C25

where co5 > 1 and
2a

T
11—« 1

=«a—1.

0%w

On the other hand, form Corollary 2.1 we know that for any p > 0, uG,[%5%] is a super
solution of problem (2.15). Furthermore, from Lemma 2.1,

1 0w

— < G, z)pt < cs.
s = [aﬁa]( )p >~ G5
Now choosing p; = m and py = 2co5c5, we derive that
0*w 1 0*w
lim su Gol=—(2)p(x)' ™ < —, liminf Gol=——(2)p(2)1 ™% > co5.
T o[ @ole)' 0 < = Emint Gl @)o(e)' " > e

thus, from [5, Proposition 6.1], there is no solution u such that

1
< liminf -« < I 1—a < '
Cos a:eg,nxlgan u()p(x) = xelén?_l)ggu(m)l)(a;) < Cos

The contradiction is obvious.

We finally prove that 7o(a) > o — 1. Inversely, if 7o(a) < a — 1, then we have that

2a 1+«
o(a) T 1—a

1—

From [5, Theorem 1.1] nonexistence (ii), there is no solution u of problem (2.15) with

2a 2a 1+«

max{1l — @) m} <p<iT (2.16)
such that
0 < Jpinhy W) ™7 S oy ue)p(a) 7 < oo 210
Let 7 = 2o — (1 — a)p, then
T>20[—(1—Oz>1__‘_z =a—1
and 9,
f<204—(1—04)1_a =0

11



For to > 0 small, ;, = {z € Q, p(x) < to} is C* and define

d(z)", x €y,
Vi(z) =< l(x), x€Q\Qy, (2.18)
0, x € Q°,

where the function [ is positive such that V; is C? in Q. From [5, Proposition 3.2 (ii)], there
exists 01 € (0,tp] and cgg > 1 such that

1 _ _
C—P(l")T_za < (=A)*Vi(x) < copp(a)™2*, Vo € Q.
26

We observe that G,[2=¢] is a super solution of (2.15) with p in (2.16). Now we define

ona
0%w
one

Wu(z) = G | = pVi(z) — 1*Gall],

where G,[1] is the solution of
(=A)*u=1 in £,
u=0 in RV\Q
We see that 7 — 2o = (a — 1)p, there exists g > 0 such that for p > py and = € Qg
(=A) W) + W [PT Wo(w) < —easpp(a) ™ + cEp(a) @77 < 0

and there exists po > 0 such that for p > ps and x € Q \ Qy,,

51 Q\Qs, one

0% p
(A Wola) + WP W) < ot (-8l = i+ (uin Gul521) <0,

Therefore, for pn = max{p, po}, W, is a sub solution of (2.15) with p in (2.16) and

@ 1
0 w] >W, and  liminf W,(z)p' %(z) > —.

a—1
Cs > Gal5s
P a[ﬁna 2€Q, 100 cs

By [5, Theorem 2.6], there exists a solution u of (2.15) with p in (2.16) satisfying (2.17). A
contradiction is obtained and the proof is complete. 0

3 Proof of Theorem 1.1

Lemma 3.1 (i) Assume that g is a continuous nondecreasing function satisfying g(0) > 0

and (1.8). Then
I Galg(Galk 2] (x)p(a) = = 0 (31)

p(z)—0F

i1) Assume that p € (0,32), then there exists co7 > 0 such that for any v € € with
l-«a
t € (0,t),
0%w

one

Gal(Gal7=,)P)(x) < carp(a)?* 0 + ey (3.2)

12



Proof. (i) Without loss of generality, we may assume that
0€0R, 1y=en, Ts=Ssen
and we just need prove (3.2) and (3.1) for x5 with s € (0,%¢). It follows by Lemma 2.1 that

1

Loyt < o 2
Cs

on

[(z) < esp(z)*t, Vo € Q. (3.3)

Combining with monotonicity of g, we have that

0%w
one

Galg(Galk 2] ()5 < / Galire, 2)g(cskp(z)* )y dzst

csp®(z)

< _OF %)
— Jolwe— 2Nl

gleskp(=)* ") dzs'

= ¢ [/B %g(cg,kp(z)al)dz

to (0)NQ |x3 -

Sl—apa(z)
+ / ———=g(cskp(2)*)dz
Q\ B, (0) [z — 2|V

= Ay(s) + As(s).

Let B; (0) be the ball with radium ¢ and centered at the origin in R¥~! and since 02 is
C?, there exists a C? function ¢ : B} (0) — R such that

(2',(") € 0 for any 2’ € B, (0),
where 77 > 0. Denote
V(y) = (v, ) + ynTi wwn, VY= (Y yn) € Q,

where
Q,={z=(,2y) eERVI xR, || <, 0<2y<n}.

Thus, VU is a C? diffeomorphism mapping such that

\II(y) =Y, vy = t€N7 te (0777)

Therefore, if ¢, > 0 is chosen small enough, we have that QN By (0) C ¥(Q,) and there
exists cog > 1 such that for z = ¥U(y) € ¥(Q,),

1
p(z) =yn and —[sey —y| < [sen — 2| < caslsen —yl. (3.4)
28
Then we have that

a = %gwpw-%z

10 (0)NQ |2

Slfapa(z)
<o gleskp(2)*)dz
# Bty (0)NQ2 lzs — Wl(z)|N- ’

< / SR ey
> Cog T INn_aJ\GRY Y-
Q, |7s —yl¥ "
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For s € (0, %77), we decompose @), as following

i

+ 1
QLO:{Z:(ZCZN)EQ%: §§‘2/|< (Z_; >S, 0<ZN<§}
and
is i+1)s . 1 3
Qij={z=(,2n) € Qy : Eélz’|<< 5 s (G +3)s <an < (G +5)s},

where 1 = 0,1,---Ng, 7 =1,--- Ny and Ny is the largest integer number such that Ny < 8"—8.
Then we derive that

For y € Qo,1, we have that 5§ < yy < 32—5 and

81—04 o .
/ N g(eskyy Dy < ess' O (cakis® ) / T
ans e ey 7 =7
o 1
— C5T_}Jrag(629k’7’)/ _’—N—adz (35)
Byys(en) |70 — 2|
1+«

< egor” e g(cagkr),

where r = s*~! and ¢y, 59 > 0.
For y € Qo with i =0, ---, N,, we obtain that |z, —y| > %s and

sty o—1 cast N a a-1
———vadleskyy )dy < = [ yng(eskyy )dy
Qio |Ts — Yl (1+1) Q
%,0 i,0

S

S
C32

- W/OZ t*g(cskt® 1) dt (3.6)

cp(l—a)™ [ | 1ta
—(1+i)N—a 7N%7' —a g (cskT)dr,

where r = 57! and ¢31, c30 > 0.

Fory € Q;; withi=0,---,N;,j=1,---,Nyand (i,7) # (0,1), we derive that |z, —y| >

%s and (j+%)s§yN < (j+%)s

s YR a-1 cgzs N Cvaei
e y|N_ag(C5kyN Yy < ——(j5)"g (csk(js)* ") |Quyl
Qiy |%s —

C34J%  _ita e
= #T 1*0‘9(05]6] 17“), (37)

where r = 57! and ¢33, ¢34 > 0.
Therefore, there exist ¢35, c36 > 0 such that

s

. _l4a N, -
C35jaT 11—« a1 Ca6 i

A < 2 6 Lo v
l(S)—i:OZj:O (,L’_'_j_i_l)Nfag(CQQ j T)+;(1+Z>NQ /SNlT 9(65 7—) T

Since

. c o _{_lfa > _{_lta
Z(1+§§Nfa /s 7 1‘“9(05k7)d7§037/s . T tag(cskT)dr

. N—-«a N—-«a
1=0

14



which tends to 0 as s — 0% by hypothesis (1.8).
For any € > 0, there exists n. > 1 such that

N

C35
— < e,
> s

4,J="Ne

1+«

and since {(j* ') 1=a g(cookj* 1)} is uniformly bounded, we imply that

s ‘o ; o
C35] _lta ca—1 C35. ol o lia .
roiag(cagki® ) = : R e
l; (i+7+1)N-« g(caokj ) l; i+ —|—1)N*a(‘7 ) g(caok
< C3g€.

For i,j < n,, there exists s. € (0,n) such that

. 1+«

§or 1ag(egkj T r) <€, forr>s

a—1
€ )

thus, for any € > 0, there exists s, such that for s € (0, s,)

Ne ‘o s —1
C35) _lta a—1 C35)
E — —r 1mag(cpkj® ) <€ E — —
i=0,j=0 (t+j+ 1N~ =070 (i+j+1)N-
< cre.

Then we deduce that

Sl_igl+ Ai(s) =0.
Therefore,
lim G [g(Galk 2] (22)s'= = 0
shor e gEa I =

Since |zs — z| > egsto for Q \ By, (0), therefore,
Ay < 63951_'1/ p*(2)g(cskp(2)* Hdz
O\Biy (0)

do
< cggslaw(ﬁQ)/ tg(cskt™ ) dt
0

< g8t

where c39, c49 > 0 and dy = max,cq p(z). Thus, (3.1) holds.
(#7) When g(s) = s? with p € (0, 1%2), we observe that (3.5) becomes that

Sl—ocya B 3
| ety < gt
0,1 s

(3.6) turns out to

s' YR 1 C41 2
S\ A ya— pdy _ —/ toz-i-(oc—l)pdt
/Q 7, — v N T+ )y
( C4§N gltat(a=1)p
14 4)N-«
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and (3.7) becomes that

/ Slfay?(f (csyafl)pdy < Ca3 gltat(a=1)p
0 [ms —y[N—a N = (It g)Ne
Therefore, we have that
/ P (ygv_ap(y)(a—l)pdy < 04482a+(a—1)p‘
Bt (0)NQ2 |IS - y|

which, combining (3.8), implies (3.2). O
Proof of Theorem 1.1. To prove the ezistence of weak solution. Take {g,} a sequence of

C' nondecreasing functions defined on R satisfying g,(0) = ¢(0) and (2.9). By Proposition
2.3, problem (5.6) admits a unique weak solution wy, such that

0w,
0 < upy < Ga[a—ﬁ(z] in €
and 50
/ [t (—A)E + gn(twpn)Eldz = k {(x)dw(:v), Ve € X, (3.9)
Q aq Oy

For any compact set K C €2, we observe from [6, Lemma 3.2] that for some 5 € (0, a),
[urnllesgey < cask.
Therefore, up to some subsequence, there exists u; such that

lim wug, =up  in Q.
n—oo

Then g, (ug,) converge to g(uy) in € as n — oco. By Proposition 2.2 and (3.19) in [6], we
have that

: 0*lv
i = i L), a0l < caGal 2
and .
m()\) < ey A T for > >\0,
where oo
m(A\) = / pPoo(z)dr  with Sy ={x € Q:G,| _‘,Vl] > A}
Sy one

For any Borel set £ C €2, we have that

0%|v 0%|v
/\gn(un)\pgg(x)dxé/ N g(kGa[ U]) pgg(w)dx+/ N g(kGa[—U]) Po(x)dx
E ENSS, on ENSy on
z k

where g(r) = g(|r|) — g(=[r])-

16



On the other hand,

Amé(s)dm(s) = lim /2 ! i(s)din(s).

T—oo [

m (%) j (%) t / " (s)dg(s) < cund (%) (%) e | "t ag(s

T

_lta & _1—lta

§C48T ii_&g(T‘)—F1+O[;4j_1/A S ! }tag(s)ds.
11—« %

Thus,

By assumption (1.8) and [6, Lemma 3.4] with p = {2, T_%g(T) — 0 when 7" — oo,
therefore,

(AN (A < ~ C49 > _1—lta
m (E) g <E> +/2 m(s) dg(s) < %/2 s ' 1= g(s)ds.

Notice that the above quantity on the right-hand side tends to 0 when A — oo. The
conclusion follows: for any € > 0 there exists A > 0 such that

C49 > 1 lda €
_— —a < —.
—1+0‘+1/A s g(s)ds < 2
l—« &

For A fixed, there exists ¢ > 0 such that

[ piatarts <6— 3 (7)) [ siataras <

which implies that {g, o u,} is uniformly integrable in L'(Q, p%odz
in L'(, p§dx) by Vitali convergence theorem.
Passing to the limit as n — +oco in the identity (3.9), it implies that

/sz[uk(_A)a§ + g(ug)§ldr =k 0°¢(x)

on OnY

)

[NRe

~—

. Then g, ou,, — gou,

dw(z), VEeX,.

Then uy, is a weak solution of (1.6). Moreover, it follows by the fact

KGo D) — kGl D)) < g < hGa[ o] in 2 (3.10)

Uniqueness of weak solution. Let uy,us be two weak solutions of (1.6) and w = u; — us.

Then (—A)%w = g,,(uz) — gn(u1) and g, (uz) — gn(u1) € LY(Q, p*dz). By Kato’s inequatlity,
see [8, Proposition 2.4], for £ € X, & > 0, we have that

/ ) (—A)*¢de + / (9 (211) — g (2)sign(w)dz < 0.
Q Q

Combining with [, [gn(u1) — gn(u2)]sign(w)édz > 0, then we have

w=0 a.e. in Q.
Regularity of uy.,,, and uy,. Since g, is C' in R, then by [6, Lemma 3.2], we have
[tk llczats oy < csok, (3.11)

for any compact set K and some 3 € (0, ). Then uy, is C?**F locally in Q. Together with
the fact that w,j is classical solution of (2.12), we derive by Theorem 2.2 in [5] that wuy is a
classical solution of (2.12).

To prove (1.9.) Plugging (3.1) and (3.3) into (3.10), we obtain that (1.9). O
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4 Proof of Theorem 1.2

o)

4.1 Strong singularity for p € (1 + 2«

In this subsection, we consider the limit of {u;} as k — oo, where uy, is the weak solution of

(—A)u+uw’ =k%2 in Q,

u=0 in  Q°

here p € (1 4+ 2a, 1+a) From Theorem 1.1, we know that k +— wy is increasing and uy is a
classical solution of (1.2).
In order to control the limit of {uy} as k — oo, we have to obtain barrier function, i.e.
a suitable super solution of (1.2). To this end, we consider C? function w, satisfying
2a
p—1
() = p(x) ,  for x e Qy, (4.1)
0, for z= € Q°.

We see that w, € L'(Q2) if z% <1 ie p>1+2a.

Lemma 4.1 Assume that p € (1 + 2, 1=2) and w, is defined in (4.1). Then there exists
Ao > 0 such that Aw, is a super solution of (1.2).

Proof. For p € (1 + 2w, =2), we have that —pQTO‘l € (—1,0) and from [5, Proposition 3.2], it
shows that there exists ¢(p) < 0 such that

2a

(—A)*wp(z) > e(p)p(x) 717, z €.
Thus, taking \g = |c(p)|v%1, we derive that
(=A)*(Nowp) + (Aowp)? >0 in €

Together with Agw, > 0 in Q°, Aw, is a super solution of (1.2). The proof ends. O

We observe that the super solution Agw, constructed in Lemma 4.1 provide a upper
bound for u.

Proof of Theorem 1.2 (i). For p € (14 2a, =2), we have that

2a
2y
P €(-1,-14+«w)
and it follows by (3.3) that
0*w csk
up(z) < kGa[aﬁa](x) < || v €Q

Then limgeq p(z)—0 3 ((w)) = 0 and we claim that

up < Aw, in Q.
In fact, if it fails, then there exists 2y € €2 such that

(ur — Aowp)(20) = igf(uk — Aow,) = ess %nj\f(uk — Aow,) < 0.

18



Then we have (—A)*(u, — Aow,)(20) < 0, which contradicts the fact that
(=A)*(up — Xowp)(20) = Aowh(20) — up(20) > 0.
By monotonicity of the mapping k& — wy, there holds

Uoo () := lim uy(z), € RY\ {0},

k—o00

which is a classical solution of (1.2) and
Use(7) < Aowy(x) = Nolz| 77, VzeQ.

By applying Stability Theorem [5, Theorem 2.4], we obtain that u., is a classical solution of
(1.2).
Finally, we claim that there exists c5; > 0 such that for t € (0, ),

UOO(.Z‘) Z C51t_p2Ta1, Vx € Ct. (42)

_ (1—a)p—1—a
Indeed, let t, = (0 'k) <1*05Pi1*a, where o > 0 will be chosen later, then k = ot, "'
and for z € C;, we apply Lemma 3.1 with p € (1 + 2a, 2%) that

T l-a
5%} aaw
> kG, |=— PG (G [==21)P
uk(r) 2 kGa[5=](7) = K Gal(Gal522]) (@)
> C5/€ta—N[1 — C52kp_1t(a—1)p+a+1]
_ 20
> ooty [ — csaoP ML (ty,/2) 0P o]
_ 20
> csot), "1 — expoP 120"
Cs0 _ 2o
> —p(a)

N—-a)p—a—N _ 1

where we choose o such that csoo?12( 5. Then for any z € €, there exists

k > 0 such that z € Q2 and then

650- 2

uoo(w) 2 uk(r) 2 —=p(z) 771, Vo e

This ends the proof. U

4.2 The limit of {u;} blows up when p € (0,1 + 2q]

In this subsection, we derive the blow-up behavior of the limit of {u;} when p € (0,1 + 2a/.
To this end, we have to do more estimate for uy.

Lemma 4.2 Assume that g(s) = s? with p € (1,1 + 2a] and uy is the solution of (1.6)
obtained by Theorem 1.1. Then there exist cso > 0, 19 € (0, ;11) and {rg}r C (0,7r0) satisfying
r, — 0 as k — oo such that

C52
> —= Qi - 4.
ug(x) > () Vo €y, (4.3)
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Proof. We divide a, p into 3 cases:

Case: 1 < 2% <142cand p € [%,1+2a); Casell: 1 < 2% <142« and p € [1, 2%);
Case I1I: 12_0‘& § landp e (1,1 + 2a], Case 1V: 12_0‘& 2 14+2a and p € (1,1 + 2a/.
To prove (4.3) in Case I and Case III. Let t; = j~ with j € (ko, k), then j = t .

Applying Lemma 3.1 (ii), for p > 2%, we have that for z € Q;, \ Q4
2

JCalZ 2 () ~ Cal(Cal S

($)(a71)p+2a

v

u;(x)

v

—1 ya—1 .
¢ gty — carg?p
1, —ap—(1— 2
c ltj 1 627tj ap—(1—a)p+2a

p(x)~,

v

v
|

2C5

where the last inequality holds since —ap — (1 —a)p+2a > —1 and r; — 0 as j — oo. Then

for any = € €y, there exists j € (ko, k) such that z € Q; \ Q+; and then
2

ug(z) > u;(x) > —p (z), Vo e Q.
205

To prove (4.3) in Case II and Case IV. Let r; = & with j € (ko, k), then j = r;“

for x €, \ Q¢ , we have that
2

0%w ) 0%w
uj(r) > jG, [a* J(z )—J”Ga[(Ga[aﬁa])p](@
> 5t jp(x)* Tt = corg?
Z Cs_ltj_l —Cg7t;ap
1
> 1
> 205/)( r),

and

where the last inequality holds since —ap > —1 and r; — 0 as j — oo. For any x € €,

there exists j € (ko, k) such that z € Q;, \ Q; and then
2

uk(z) > uj(x) > —p(x)™", Vo € Q.

The proof ends. U
Proof of Theorem 1.2 (ii). It derives by Lemma 4.2 that

T 1= /
Qi \ Q¢

ty
2

Then
(—A)*u+uP =0 in QV\Q,,

u=0 in RM\Q,
u=u n Q

admits a unique solution wy. By Comparison Principle,

wp > wy,  in o By (yo)-

20

ug(x) > 052/ p Hz)dr — 0o as k — oo.
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Let wy, = wy, — ugxa\q,,, then wy = wy, in \ Q, and for x € Q\ Q,,

(—A)*W(x) = — lime_,o+ fBgo(yo)\Be(z) %dz

+limeos st()(yo)\Be( ) T2 _x|N+2a dz
= —lime o+ fRN\Be(x) uﬁ(zmw%?(f dz + fB RE “;|§V+2a dz
Z (—A)awk(:c) + C53T},

~N=2a and the last inequality follows by the fact of

where c53 = (|yo| + 70)
|z — x| < |z|+ 2| <|yo| + 19 for Vz € B%(O), Ve e Q\ Q.

Therefore,

(=A) () + wi(x)

v

(—A)awk(x) + w’,z(x) + Cr3Tk
= (53T, \V/ZL‘ - Q \ Qtw

that is, wy is a super solution of

(—A)au + uP = C53Tg in \ Qto,

(4.7)
u=0 in (2\ Q)"
Let 1, be the solution of
(—A)*u=1 1in Q\Q,,
u=0 1in (Q\ Q)"
Then (0537rk)%"—1 is sub solution of (4.7) for k large enough. By Comparison Principle,

2 maxp N N1
we have that

m ()

—r VYzeB
2maxgn 1; v oo (Y0),

Wy (z) > (6537%)%

which implies that
wi(y) > csalcsame)?, Vy € Q\ Q,

where ¢34 = mingep 1@ Therefore, (4.6) and (4.4) imply that

20 (o) 2maxRN 1
lim ug(y) > lm wy(y) = oo, VN Q.
k—o00 k—o00
Similarly, we can prove

lim ug(y) > hm wi(y) = 00, Yy € Q.

k—o0 —00

The proof ends. Il

5 Proof of Theorem 1.3

In this section, we are devoted to consider the solution of (1.10) with different blow-up
speeds. Without loss of generality, we assume that

IL'():OG@Q.

21



For k,7 € N, donte

v =w + o, (5.1)
and then " s 50
v N 0 W
Balgmal = Calggal + Calgzal:

0%w

which is a a—harmonic function of (2.14), since G,[4z%] is a a—harmonic function of (2.14)

and G,[2-2] is a— harmonic.

e
Proposition 5.1 Let Go[5:4] given by (5.1) and py = 3E2. Then there exists cs5 > 0 such
that 9
“v
|| a[%]HMP?V(Q’pad;p) S Cs5. (52)
Proof. Since
0“v 0%dy , 0%w
Gl yrvcayoan) < FIGal Tl oy + HNBalome i sy (53)
From Proposition 2.2 and px = }f—z > %, on the one hand, we have that
0“9y 00‘50
HG [ ]HMpN(Qp"‘dm) < C56HG [ ]HMP (Q,pdx)
< C56C55, (5.4)

On the other hand, for A > 0, denote

0“0y

Si={r €0 6o S 2)(w) > A} and m()\):/s P () da

and from [6, Lemma 3.3] with v = dg, there exist \g > 1 and ¢57 > 0 such that for any
A Z )\07

m(A) <

which implies that
0%y

IGal 5= (5.5)

]”MPN(Qpadx) Cs555

Thus, (5.2) follows by (5.4) and (5.5). Comblnmg [6, Theorem 1.1] and the proof of Propo-
sition 2.3, we have following result.

Proposition 5.2 Assume that {g,}» is given by (2.9). Then

(—A)*u + gp(u) = kgﬁ’j in €,
(5.6)
u=20 in Q°

admits a unique positive weak solution uy ;. satisfying
(i) the mappings k — Uy jn, j — Uk jn are increasing, the mapping n — g ;. s decreas-
mg
0%v 0%v 0%v
- Ga n Ga A= < n < Goz =
S 1(8) = Galgn(Gal o= D](2) < win(e) < Gal o

(19) gy s a classical solution of (2.12).

Gal

l(z), YzeQ  (5.7)
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Lemma 5.1 There exists csg > 1 such that

1 _ 0“0,
—p*(z)]a| N < Ga[ o=

< (07 —-N . .
- aﬁa] < exgp®(z) ||, Vo € Q) (5.8)

Proof. For any x € €, there exists s > 0 such that x € C,, and then letting y; = t7ny with
t € (0,s/2), we have that

S 1
yp—x|=s—t> 3= §HlaX{PaQ(yt),PaQ(SC)}-

Thus, it follows by apply [4, Theorem 1.1,Theorem 1.2] that

_pan(yt)/)as]zv( ) < Golz, ) < Cwﬂaa(%)ﬂas;v( )
cso T — il [z —
From
Go[Z2(4) = lim Gulyy), Vo€ (5.9)
«@ aﬁa — 0+ «@ 7yt ) ) .
we deduce that
1 0%d
L @)l < o] < conp(@)la] N, Vreq.
Ce0 on

Lemma 5.2 Assume that g is a continuous nondecreasing function satisfying g(0) > 0,
(1.18) and (1.14). Then

Gal9(Gal gz )] ()

li =0. 5.10
o1 @)+ )] o1
Proof. From Lemma 3.1 and (1.13),
: aaw 11—« _
i Galg(Gal I ) = 0 (5.11)
From [6, Lemma 4.1], we have that
lim G [g(Ga[2220])] (s770)s™ 2 = 0 (5.12)
s e a0 = '
By (1.14),
0“v 0%w 0%
<
Calo(Cal ]))(2) < | Galg(Gal S (2) + Calg(Gal o))

together with (5.11) and (5.12), we implies (5.10). O

Proof of Theorem 1.3. The existence of weak solution just follows the procedure of the
proof of Theorem 1.1 by using Proposition 5.1 and Proposition 5.2. It is the same to prove
the uniqueness and regularity of weak solution. Finally, plugging (2.3), (5.8) and (5.10) into
(5.7) replaced g, by g, we obtain (1.15). O
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